Core Mathematics C1 Paper K

1. Express $\sqrt{50} + 3\sqrt{8}$ in the form $k\sqrt{2}$. [3]

2. Find the coordinates of the stationary point of the curve with equation

$$y = x + \frac{4}{x^2}.$$
 [5]

3.

The diagram shows the curve with equation $y = x^3 + ax^2 + bx + c$, where a, b and c are constants. The curve crosses the x-axis at the point (-1, 0) and touches the x-axis at the point (3, 0).

Show that a = -5 and find the values of b and c. [5]

4. The curve C has the equation $y = (x - a)^2$ where a is a constant.

Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 6,$$

(i) find the value of a, [4]

(ii) describe fully a single transformation that would map C onto the graph of $y = x^2$. [2]

5. The straight line l_1 has the equation 3x - y = 0. The straight line l_2 has the equation x + 2y - 4 = 0.

(i) Sketch l_1 and l_2 on the same diagram, showing the coordinates of any points where each line meets the coordinate axes. [4]

(ii) Find, as exact fractions, the coordinates of the point where l_1 and l_2 intersect. [3]

6.	(a)	Given that	$y=2^x$	find	ex	pressions	in	terms	of v	v for

(i)
$$2^{x+2}$$
, [2]

(ii)
$$2^{3-x}$$
. [2]

(b) Show that using the substitution $y = 2^x$, the equation

$$2^{x+2} + 2^{3-x} = 33$$

can be rewritten as

$$4y^2 - 33y + 8 = 0. ag{2}$$

(c) Hence solve the equation

$$2^{x+2} + 2^{3-x} = 33. ag{4}$$

7. The point A has coordinates (4, 6).

Given that OA, where O is the origin, is a diameter of circle C,

(i) find an equation for C. [4]

Circle C crosses the x-axis at O and at the point B.

- (ii) Find the coordinates of B. [2]
- (iii) Find an equation for the tangent to C at B, giving your answer in the form ax + by = c, where a, b and c are integers. [5]
- **8.** (i) Express $3x^2 12x + 11$ in the form $a(x+b)^2 + c$. [4]
 - (ii) Sketch the curve with equation $y = 3x^2 12x + 11$, showing the coordinates of the minimum point of the curve. [3]

Given that the curve $y = 3x^2 - 12x + 11$ crosses the x-axis at the points A and B,

(iii) find the length AB in the form $k\sqrt{3}$. [5]

Turn over

- **9.** A curve has the equation $y = x^3 5x^2 + 7x$.
 - (i) Show that the curve only crosses the x-axis at one point.

[4]

The point P on the curve has coordinates (3, 3).

(ii) Find an equation for the normal to the curve at P, giving your answer in the form ax + by = c, where a, b and c are integers.

[6]

The normal to the curve at P meets the coordinate axes at Q and R.

(iii) Show that triangle OQR, where O is the origin, has area $28\frac{1}{8}$.

[3]